A multi - scale probabilistic network model for detection , synthesis and 13 compression in mammographic image analysis

نویسنده

  • Lucas Parra
چکیده

20 We develop a probabilistic network model over image spaces and demonstrate its broad utility in mammographic image analysis, 21 particularly with respect to computer-aided diagnosis. The model employs a multi-scale pyramid decomposition to factor images across 22 scale and a network of tree-structured hidden variables to capture long-range spatial dependencies. This factoring makes the computation 23 of the density functions local and tractable. The result is a hierarchical mixture of conditional probabilities, similar to a hidden Markov 24 model on a tree. The model parameters are found with maximum likelihood estimation using the expectation-maximization algorithm. The 25 utility of the model is demonstrated for three applications: (1) detection of mammographic masses for computer-aided diagnosis; (2) 26 qualitative assessment of model structure through mammographic synthesis; and (3) compression of mammographic regions of interest. 27  2003 Elsevier Science B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A multi-scale probabilistic network model for detection, synthesis and compression in mammographic image analysis

We develop a probabilistic network model over image spaces and demonstrate its broad utility in mammographic image analysis, particularly with respect to computer-aided diagnosis. The model employs a multi-scale pyramid decomposition to factor images across scale and a network of tree-structured hidden variables to capture long-range spatial dependencies. This factoring makes the computation of...

متن کامل

Detection, Synthesis and Compression in Mammographic Image Analysis with a Hierarchical Image Probability Model

We develop a probability model over image spaces and demonstrate its broad utility in mammographic image analysis. The model employs a pyramid representation to factor images across scale and a tree-structured set of hidden variables to capture long-range spatial dependencies. This factoring makes the computation of the density functions local and tractable. The result is a hierarchical mixture...

متن کامل

Capturing contextual dependencies in medical imagery using hierarchical multi-scale models

In this paper we summarize our results for two classes of hierarchical multi-scale models that exploit contextual information for detection of structure in mammographic imagery. The first model, the hierarchical pyramid neural network (HPNN), is a discriminative model which is capable of integrating information either coarse-to-fine or fine-tocoarse for microcalcification and mass detection. Th...

متن کامل

طراحی روشی کارآمد در فشرده سازی چند مرحله‌ای تصاویر ماموگرافی جهت ذخیره سازی و انتقال بهینه بر مبنای شبکه‌های عصبی مصنوعی و الگوریتم L-M

Background: In the telemedicine process, using digital techniques in disease diagnosis caused to have felt needs of archiving and storing patient information and high bandwidth in data transfer. Methods: This study aimed at introducing an efficient way of multi-stage compression of mammographic image data based LM algorithm and artificial neural networks. At First, data derived from mamm...

متن کامل

Detection and Classification of Breast Cancer in Mammography Images Using Pattern Recognition Methods

Introduction: In this paper, a method is presented to classify the breast cancer masses according to new geometric features. Methods: After obtaining digital breast mammogram images from the digital database for screening mammography (DDSM), image preprocessing was performed. Then, by using image processing methods, an algorithm was developed for automatic extracting of masses from other norma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003